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Abstract 

This paper presents a topology optimization framework for multi-material 3D structures to be used in mechanical load carrying 
applications. This framework is an extension of an ordered multi-material interpolation scheme originally proposed in 2D to 
the 3D minimum compliance problem implemented in MATLAB. The algorithm starts by using the Young’s moduli and cost of 
the selected materials, then picks binary combinations with ordered densities to interpolate the value for the current iteration. 
Following these interpolations, the next step of the design is the solution of the mechanical compliance problem until the 
desired minimum compliance is met subject to volume and cost constraints. The solution scheme is based on Optimality Criteria 
Method and standard density filtering schemes. The main contribution of this paper is that the proposed design scheme 
implemented in MATLAB is an easy-to-use 3D topology optimization scheme with multi-material constituents based on a 
modified SIMP interpolation. Results show that the 3D code is able to deliver similar design results when compared with the 
existing 2D version. This effectively expands the topology optimization based design capability to many practical 3D 
engineering problems in a standard topology optimization setting and easy-to-use implementation in MATLAB. 
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1. Introduction 
Topology optimization (TO) is a powerful design 
approach applied to different engineering applications 
since the seminal work in 1989 [1] ranging from static 
and dynamic performance of structures under 
mechanical and thermal loading [2] to electromagnetic 
designs [3] and more recently to manufacturable 
designs using additive manufacturing techniques [4]. 

TO algorithms use different material interpolation 
techniques such as Solid Isotropic Material with 
Penalization (SIMP) and Rational Approximation of 
Material Properties (RAMP) [5]. RAMP is proven to 
bypass numerical issues at zero density where SIMP is 
prone to numerical issues [6]. Level-set method used in 
TO addresses grey-scale issues more commonly faced in 
density based approaches [7]. 

Several public codes are available in literature but there 
is still room for improvement in leveraging these to 
their full potential. To the best of our knowledge, these 
are implemented to 2D problems or make use of a single 
material allowing for the design of a chosen material 
with void regions [8, 9]. However, their implementation 
in MATLAB and availability as open-source codes in 
addition to their easy-to-use structure have resulted in 
these codes to become baseline references for further 
studies in TO.  

Attempts to extend these codes and investigate their 
applicability to more realistic structures also exist. The 
effects of applied load in terms of magnitude, direction 
and location on the resulting 3D structure were 
investigated [10]. Applications of TO algorithms to 3D is 
also desired as the connection with additive 
manufacturing has become possible and not been 
limited to structural TO applications only [11]. 
Computational optimization of the public 2D and 3D 
codes were pursued to increase time efficiency of the 
codes in another study, while a multi-material approach 
was introduced [12]. 

Similarly, the extension of single material TO 
algorithms to multi-material approaches in 3D has been 
studied in [13-15]. Another noteworthy study has been 
carried out on reducing the crack propagation with 
optimized topologies using multi-materials, based on 
the extended finite element method [16]. The multi-
material approach improves the TO framework for 
structural mechanical applications by making use of 
relatively less compliant material in elements under 
higher mechanical load [17]. This material placement 
technique will help the design process by reducing 
overall material usage compared to a single material 
solution. 

In this study, the ordered SIMP method introduced by 
[17] is implemented where it is adopted for binary 
combinations of the utilized materials. However, this 
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multi-material technique was implemented on the 99-
line code provided in [18]. To benefit from the multi-
material TO framework with multiple constraints in 3D 
design domains, in this paper, the existing interpolation 
technique is adapted to the 3D TO code provided in [9]. 
The resulting framework presented in this paper is 
based on the integration of the ordered multi-material 
technique to the 3D design problems based on the 
reference work in [9] . 

2. Material and methods 

2.1. Topology optimization framework for 3D 
multi material structures 

This paper presents an enhanced TO framework for 3D 
multi material structures in MATLAB utilizing mainly 
two publicly available TO codes developed by Zuo & 
Saitou and Liu & Tovar [9,17]. In this section, the 
reference algorithms are briefly introduced and 
enhancements proposed by the 3D multi-material TO 
framework is discussed in detail. Finally, to prove the 
validity of the resulting 3D multi-material TO code, it is 
compared with the reference TO framework in 2D on 
the bridge design problem as in Fig. 1. Nodes at x = 0 
and y = 0 coordinates are constricted at all three 
degrees of freedom while the nodes at the right are 
constricted only at the y direction. Forces are given as 
F, 2F, F at positions x = 1/4, x = 1/2 and x = 3/4 
respectively. The boundary conditions and loads 
discussed are repeated throughout the z-direction for 
all nodes. 

 

Fig 1. Bridge design problem with boundary conditions from 
[17].  

2.1.1. Multi-material topology optimization 
using ordered SIMP interpolation 

The multi-material 2D TO code implemented by Zuo & 
Saitou uses a modified version of the Solid Isotropic 
Material with Penalization (SIMP) material 
interpolation. The classical single material SIMP 
method on its own is not applicable to the design 
domains where multiple materials are used for the 
solution. Hence, Zuo & Saitou propose the modified 
SIMP strategy for multiple material usages. In this 
strategy, “scaling coefficient” (1) and “translation 
coefficient” (2) parameters for both elastic modulus (E) 
and cost interpolations are introduced to tailor the 
traditional SIMP for ordered SIMP interpolation to 

enable multi material solutions. In (1) and (2), E 
represents the elastic modulus and ρ represents the 
density of the materials in index i and i+1, while p is the 
penalization factor.  

𝐴𝐸 =  
𝐸𝑖 − 𝐸𝑖+1

𝜌𝑖
𝑝

− 𝜌𝑖+1
𝑝  

(1) 

𝐵𝐸 =  𝐸𝑖 − 𝐴𝐸𝜌𝑖
𝑝

 (2) 

These coefficients are calculated by taking binary 
combinations from the density ordered arrays of the 
materials’ density, elastic modulus and cost properties 
which were normalized prior to the calculations as in 
(3). They are used for determining the effective E (4) 
and cost function (5) in an element for the current 
selection of materials. For finding the cost function’s 
coefficients, a similar procedure is followed to (1) and 
(2) but E values are changed with cost values and the 
penalization factor is used as 1/p. 

 𝜌𝑖 =
𝜌𝑇

𝑖

𝜌𝑚𝑎𝑥
 (𝑖 = 1, 2, 3, … 𝑛)  

(3) 

𝐸𝑒(𝜌𝑒  ) = 𝐴𝐸𝜌𝑒
𝑝

+  𝐵𝐸   (4) 

𝐶𝑒(𝜌𝑒  ) = 𝐴𝐶𝜌𝑒
1/𝑝

+ 𝐵𝐶  (5) 

The performance of the aforementioned strategy is 
validated in a multi material problem which comprises 
three different materials. The material properties are 
provided in Table 1. By the implementation of this 
strategy, an E-density curve as in Fig. 2 and cost-density 
curve as in Fig. 3, that unify multiple materials with 
their specifications are drawn [17].  

The developed code carries out the initialization of 
design domain for Finite Element Method (FEM) 
analysis, then proceeds with the optimality criteria 
method (OCM) to update the design with each iteration. 
The key difference compared to optimality criteria with 
one constraint is that the code uses two different 
constraints as volume fraction and cost fraction, 
consequently the optimization model, hence the 
Lagrangian function should be changed to take into 
account both of these constraints. 

Table 1. Material properties as taken from Zuo & Saitou. 

Name Normalized 
density 

Normalized 
E 

Normalized 
cost 

Color 

Void 0 0 0 White 

A 0.4 0.2 0.5 Blue 

B 0.7 0.6 0.8 Red 

C 1.0 1.0 1.0 Black 
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Fig 2. Ordered multi-material SIMP interpolation curve for 
normalized E.  

 

Fig 3. Ordered multi-material SIMP interpolation curve for 
normalized cost.  

The mapping of element densities to multiple materials 
should be elaborated on as well. The density values are 
mapped to the materials considering the median value 
of the current combination of two materials, in such a 
manner that the median value is used as the boundary 
value for the mapping, instead of the materials’ 
densities [17]. 

This ordered SIMP method was only validated for 2D 
problems. The ultimate goal of the present study is to 
adapt this method to 3D problems. For that purpose, a 
public 3D TO code is utilized, the structure of which 
code is explained in the next section. 

2.1.2. 3D topology optimization code 

The public 3D TO code provided in [9] takes advantage 
of the density-based approach which replaces 
homogenization method. In the code, SIMP method is 
used for the penalization of intermediate densities in 
the solution, tackling the well-known relaxation 
problem to overcome ill-posedness and making it 
suitable for standard manufacturing techniques. Unlike 
the original study, which focuses on three optimization 
problems, the main focus in this paper is on the 
standard minimum compliance problem. The objective 

function aims for the minimization of displacement 
under certain loads and boundary conditions subject to 
total volume fraction constraints [9]. In Fig. 4, the 
optimization structure employed is shown. 

The code moves on with using the FEM to find element 
stiffness matrices to be used later with SIMP to 
assembly the general stiffness matrix. The next step 
uses generalized Hooke’s Law to find nodal 
displacements with given force vectors and the 
assembled stiffness matrix [9]. 

The following step of the design process consists of 
updating the initial design within each iteration and 
comparing the objective function values in consecutive 
design iterations to decide on convergence. To find 
optimal material distribution for a given design domain, 
OCM is utilized in both reference codes [9, 17].  

2.1.3. Implementation of ordered SIMP method 
to the 3D to code 

In this section, changes made throughout the merging 
process of the reference codes will be discussed. Fig. 5 
shows the modified 3D TO algorithm based on the 
ordered SIMP method allowing for multi-material 
designs. The modifications in the original 3D TO code 
are highlighted in the red dotted section in Fig. 5. In the 
following section, the changes made to the default 3D 
TO code will be elaborated thoroughly. MATLAB 
R2020b was used for the application of modifications to 
the original code [19]. 

By interchanging lines 8-10 with the lines below, the 
used materials’ properties are given in the array format. 
Material properties are taken from Table 1. 

rhoVector= [10^-8 0.4 0.7 1]; 

EVector= [10^-8 0.2 0.6 1]; 

costVector= [10^-8 0.5 0.8 1]; 

In this example, the property values are in normalized 
form. However, if properties aren’t normalized, then 
these lines will simply normalize the arrays. 

maxE = max(EVector); 

maxRho = max(rhoVector); 

maxCost=max(costVector); 
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Fig 4. Step by step flowchart of the default 3D TO code  from 
Liu and Tovar, re-interpreted by the author [9]. 

matsNumb=length(EVector); 

EVector = EVector./maxE; 

rhoVector = rhoVector./maxRho; 

costVector = costVector./maxCost; 

In lines 37-47, small adjustments are made to match the 
filter with the one in Zuo & Saitou [17]. Here, floor (…) 
function provided in MATLAB is used instead of ceil (…). 
It is also noted that both codes have the ability to work 
with the sensitivity or density filter. For the specific 
bridge design problem presented here, a sensitivity 
filter with radius r=3 was used., while the penalization 
factor was selected as 4. 

Before the FEA starts in line 70, the following codes 
should be inserted to calculate the interpolated E and 
cost values. 

for i = 1:nelx 

 for j = 1:nely 

  for k = 1:nelz 

   count = 1; 

   while count<matsNumb 

if(rhoVector(count)<xPhys(j,i,k))&&(rhoVector(cou

nt+1)>=xPhys(j,i,k)) 

Ae = (EVector(count)-

EVector(count+1))/(rhoVector(count)^penal-

rhoVector(count+1)^penal); 

Be = EVector(count)-

(Ae*(rhoVector(count)^penal)); 

       EInter(j,i,k)=Ae*(xPhys(j,i,k)^penal)+Be; 

dEInter(j,i,k) = Ae*penal*(xPhys(j,i,k)^(penal-

1)); 

Ac=(costVector(count)-

costVector(count+1))/(rhoVector(count)^(1/penal)-

rhoVector(count+1) ^(1/penal)); 

 

Fig 5. Step by step flowchart of the 3D TO code adapted to 
multi-material. 

Bc= costVector(count)-

(Ac*(rhoVector(count)^(1/penal))); 

CInter(j,i,k)=Ac*(xPhys(j,i,k)^(1/penal))+Bc; 

dCInter(j,i,k) = 

Ac*(1/penal)*(xPhys(j,i,k)^((1/penal)-1));                 

break; 

end 

count = count + 1;  

   end 

  end 

 end  

end 

Line 70 is substituted with the line below to use the 
interpolated E matrix for assembling the K matrix. 

sK = reshape(KE(:)*(EInter(:)'),24*24*nele,1); 

Start

Obtain element numbers in 

x, y, z; volume fraction, 

penalization constant and 

filter radius

Prepare elements, nodes and degrees 

of freedom for Finite Element 

Analysis (FEA)

End

Prepare filter for modification of 

sensitivities afterwards

Assemble the global K matrix and use 

FEA to calculate nodal displacements

Calculate objective function and 

sensitivities 

Generate an updated design 

considering the objective function 

using Optimality Criteria Method

If not 

converged

If converged

Start

Obtain element numbers in 

x, y, z; volume fraction, 

penalization constant and 

filter radius

Prepare elements, nodes and degrees 

of freedom for Finite Element 

Analysis (FEA)

End

Prepare filter for modification of 

sensitivities afterwards

Assemble the global K matrix and use 

FEA to calculate nodal displacements

Calculate objective function and 

sensitivities 

Generate an updated design 

considering the objective function 

using Optimality Criteria Method

If not 

converged

If converged

Find the fitting material for each 

element by comparing density

Calculate scaling coefficients and 

translation coefficients to find elastic 

modulus and cost interpolations
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Lines 75 and 76 are changed to make use of the 
interpolations again. 

c = sum(sum(sum((EInter.*ce)))); 

dc = -dEInter.*ce; 

Before the OCM begins, following changes are made to 
set equivalent parameter values with the 2D version. V2 
and P2 are the introduced dynamically initialized upper 
limits as in the reference code. 

moveMin = 0.001; 

move0 = 0.15; 

alpha = 0.96; 

move = max((alpha^loop)*move0,moveMin); 

dc = -1*dc; 

V1=0; 

V2=max(max(max(dc./dv))); 

P1=0; 

P2=max(max(max(dc./(CInter+x.*dCInter)))); 

dampingCoef = 1; 

The OCM is changed to work with two constraints 
instead of one, therefore all iterations will be carried 
out with updating both bounds accordingly.  

while (((V2-V1)/(V1+V2) > 1e-6) || ((P2-

P1)/(P2+P1)>1e-6)) 

 Vmid = 0.5*(V2+V1); 

 Pmid = 0.5*(P2+P1); 

 denominator = Vmid+Pmid.*CInter+Pmid*x.*dCInter; 

 xnew = max(10^-5,max(x-

move,min(1,min(x+move,x.*sqrt(abs(dc./(denominato

r)).^dampingCoef))))); 

 xPhys(:) = (H*xnew(:))./Hs;       

 if sum(xPhys(:)) > volfrac*nele  

  V1 = Vmid; 

 else 

  V2 = Vmid; 

 end 

 if sum(xnew(:).*CInter(:))/(nele) > costfrac 

  P1= Pmid; 

 else 

  P2 = Pmid; 

 end 

end 

3. Results and discussion 
In this section, comparative results obtained via the 
original 2D and 3D multi-material TO simulations are 
presented as shown in Fig. 6 a-b. The materials used 
have the same properties as in [17] where material 
shown with black color has a higher E value but also 
costs more, the red one has an average E value with 
average cost and material shown in blue has the lowest 
E value and costs the least. The usage of black material 
is prioritized for elements under high loads because of 
its higher E value, but is not favored due to its high cost. 
The red material is used for the transition from high 
density elements to low density elements where it is 
more cost efficient to be used instead of the black 
material. Blue material is used for elements where the 
structure connectivity is important and lower values of 
stiffness are required but voids cannot provide. 

Optimization results with a chosen mesh of 100x50 and 
100x50x1 are given in Fig. 6 a-b. The thickness in z-
direction was selected as 1 element to exactly represent 
the 2D shell geometry of the original 2D bridge example 
with the developed 3D optimization code for one-to-
one comparison purposes. The resulting optimal 

material distribution results confirm the validity of the 
3D integrated multi-material code with an almost exact 
replication of its 2D counterpart topology and a 
matching convergence behavior. Convergence results 
are provided for normalized compliance values with 
respect to the total number of elements and for the 
resulting final volume and cost values for the optimized 
topologies as given in Fig. 6 c-d. Based on these results, 
after the same number of 123 iterative updates, the 
same volume fractions of 0.4 and cost fractions of 0.283 
were obtained while the objective function values 
converged to 0.0457 and 0.0456, with the 2D and 3D 
code, respectively, confirming the validity of the code 
extension to 3D.  

  (a) 

 (b) 

  (c) 

 (d) 

Fig 6. Resulting topology from (a) Zuo and Saitou’s 2D and (b) 
the implemented 3D multi-material TO codes with their 
respective results given in (c) and (d). 

4. Conclusions 
Use of multiple materials becomes important when 
various constraints are taken into consideration for the 
TO problem [17]. Zuo and Saitou’s multi-material TO 
code was implemented in 2D and in this study we 
extended it to a 3D design domain. Adaptation to 3D 
allows multi-material designs to address more realistic 
design problems. Results show that the 3D code delivers 
matching design results along with almost the same 
exact material distribution compared to the 2D code. 
Although this extension was only applied to the 
minimum compliance problem, it could be fully adapted 
to other 3D TO problems discussed in [9] such as force 
inverter and heat conduction. 
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