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Abstract: This paper proposes the combination of PD-feedback and learning-based feedforward control to solve reference 

tracking tasks in pneumatic actuators and soft robotics (SR) with unknown nonlinear dynamics and complex hysteresis char-

acteristics. The feedforward control consists of a static gain and a hysteresis compensation, which are predicted by Gaussian 

Process models. The proposed method is validated on a pneumatic actuator, and the experimental results demonstrate the 

method’s capability to solve the reference tracking tasks, despite requiring only 22 seconds of training data. The results further 

demonstrate the potential of learning-based control for pneumatic actuators and SR, by superseding the need for laborious 

manual tuning and controller design. 
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I. Introduction 
Soft actuators can be employed in a variety of medical ap-

plications such as, e.g., rehabilitation because the inherent 

compliance of soft robotics enables safe interaction and 

support of patients [1, 2]. 

However, these remarkable properties come at the price of 

highly nonlinear dynamics, and the inherent uncertainties 

typically lead to a slow and inaccurate actuator. First-prin-

ciples modeling and controller synthesis require laborious 

system identification, including sophisticated measurement 

setups, manual parameter adjustment, and often tedious 

controller tuning to achieve decent trajectory tracking per-

formance [3]. Data-driven methods have the potential to 

mitigate these drawbacks by autonomously learning con-

trollers for SR. However, many of them typically require 

either hours of training data, see e.g. [4], or disregard data-

hungry hysteresis completely. 

In this work, a data-driven control scheme is proposed that 

achieves precise reference tracking by learning Gaussian 

Process (GP) models of the soft actuator's static non-line-

arities while only requiring as little as 22 seconds of train-

ing data. 

I.I. Problem statement 
We consider a bellows-actuated 1-DOF actuator that con-

sists of two antagonistic chambers and an aluminum skele-

ton (see Figure 1, highlighted in blue). The system suffers 

from a strong hysteresis and an unknown force-to-position 

mapping. Because the actuator has redundant kinematics 

and is already assembled, the force cannot be measured. We 

consider the task of achieving precise tracking performance 

(error < 5°), while requiring minimal manual tuning effort. 

II. Material and methods 
A common control approach in pneumatics and SR consist 

in combining feedback 𝑢fb and feedforward 𝑢ff control [5]. 

A linear PD feedback controller is tuned to assure robust 

attenuation of oscillations. However, feedback alone yields 

unsatisfactory tracking performance, because it cannot deal 

with the nonlinear force dynamics and the actuator’s exten-

sive hysteresis. Therefore, we extend the PD feedback with 

a feedforward component, which consists of a static gain 

(SG) 𝑢SG and a hysteresis compensation (HC) 𝑢HC.  

 

Figure 1: 2 DOF controller design consists of feedback and 

feedforward which is powered by Gaussian Processes. 
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chambers 1 and 2, is employed. The preload 𝑝m is a con-

stant value that determines the stiffness of the system. 

We propose the use of three GP [6] models to learn a ge-

neric model of the static nonlinearities of the system. The 

learning data consists of a short back and forth motion. The 

trained GPs are used to predict a feedforward control 𝑢ff 

that depends on the coordinate 𝑥 and the hysteresis. Be-

cause hysteresis leads to data ambiguity in the configura-

tion space, the HC is predicted by two separate GPs [7], one 

predicting the HC in case of an ascending motion (�̇� > 0) 

and one GP predicting the HC in case of an descending mo-

tion (�̇� < 0). To avoid discontinuities in the prediction of 

𝑢ff, the GPs predict the gradient of 𝑢, which is denoted by 

𝑓
H

 and multi lied with the a solute value of the reference’s 

gradient Δ𝑥des. Subsequently the integration step for the 

timestamp 𝑘 + 1 

𝑢HC(𝑘 + 1) = 𝑢HC(𝑘) + 𝑓H ⋅ |Δ𝑥des(𝑘)| 

is necessary to calculate the feedforward control input. 

Here 𝑓H is either the GP ascent or GP descent prediction 

dependent on the motion direction. Finally, we incorporate 

the control law as follows: 𝑢ff = 𝑢HC + 𝑢SG. 

According to this controller implementation the prediction 

of the hysteresis depends only on the current and previous 

time step. This makes the controller causal and therefore 

real-time capable. Thus, it is not necessary to provide the 

reference trajectories batch-wise ahead of time. 

III. Results and discussion 
To train the GP models, 22 seconds of system interaction 

time were recorded, in which the pneumatic actuator per-

forms a predefined back-and-forth motion. The training 

data depicted in the configuration space, see Figure 2, illus-

trates the complex hysteresis and the nonlinearity of the 

static gain. 

 

Figure 2: The training data depicted in the configuration space 

(left) demonstrates the actuator’s complex hysteresis character-

istics and the nonlinearity of the static gain. Adding learning-

based feedforward control drastically reduces the tracking er-

rors (right). 

The benchmark task consists in tracking five randomly gen-

erated, smooth trajectories that are depicted in Figure 3. To 

solve the tracking problem, the feedback-only approach, 

the feedback plus static feedforward gain approach, and the 

feedback plus static feedforward gain plus hysteresis feed-

forward compensation approach are applied. Results de-

picted in Figure 3. show that the feedback-only approach 

fails to track the references and large average errors of 

roughly 36 ° occur. However, by adding the static feedfor-

ward gain, the error is drastically reduced to an average of 

roughly 8 ° and decent tracking performance is achieved. If 

the hysteresis compensation is added on top of the static 

feedforward gain, the tracking error decreases even further 

to an average value of only 4 °, and almost perfect tracking 

is achieved. 

 

Figure 3: The benchmark consists in tracking 5 references. The 

feedback-only approach (top) fails to solve the task. However, 

adding the static feedforward gain predicted by a GP model 

(middle), as well as further adding a GP-based hysteresis com-

pensation (bottom) leads to much smaller tracking errors. 

IV. Conclusions 
In this work, the problem of reference tracking for pneu-
matic actuators with complex nonlinear dynamics was con-
sidered, and a control approach was proposed that consists 
in combining simple PD-feedback with learning-based 
feedforward control. The latter consists of two components. 
Namely, a static gain and a hysteresis compensation, which 
are predicted by GP models. The experimental results 
demonstrate that the proposed approach achieves remarka-
ble tracking performance with average errors of just 4 °, de-
spite the GP models only requiring training data of as little 
as 22 seconds of system interaction time. 

In the context of pneumatic actuators and SR, these results 
demonstrate the potential of learning-based control ap-
proaches, because they do not only solve the control prob-
lem, but also eliminate the major drawback of conven-
tional, model-based control approaches, which require 
enormous, manual design efforts. 
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