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Abstract: The goal of this work is to demonstrate that a simple neural network can classify and distinguish Gaussian white 

noise and eight different noisy spike-waveforms with different correlation levels. For small noise levels up to 10%  

(σnoise= 10%max(x)), where max(x) is the maximum spike-amplitude) classification performance is flawless. Results for strong 

noise, e.g., σnoise=50%max(x), reveal that our network struggles with two things: distinguishing correlated data and reliably 

detecting noise. To apply our approach to real brain data, the problem of spike collisions must be solved in the future. 
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I. Introduction 
Classical spike sorting, the process of identifying and 

sorting extracellularly recorded action potentials (also 

called spikes) with regards to their timing and putative 

neuron, can be divided in the substeps of filtering, spike 

detection, alignment, feature extraction and clustering [1]. 

Since neurons generate characteristic spike-waveforms, 

corresponding assignments are feasible [1]. The desired 

outcome of spike sorting are labeled timestamp sequences 

indicating the activities of neurons. Efficient spike sorting 

is highly reliant on automated solutions as extracellular 

recordings take on incomparably high values, especially 

with high density multi-channel probes. In the last years, 

many research groups developed NNs to handle different 

subproblems in spike sorting, such as spike detection or 

feature extraction, but end-to-end solutions are also 

emerging [2], [3]. Therefore, complex deep learning 

networks like convolutional neural networks, long-short-

term memory networks, and even combinations of several 

types with many hidden layers are mostly used [2], [3] but 

simpler networks also got applied recently to tackle special 

tasks in the spike sorting pipeline. In [4], a single-hidden-

layer network was developed to classify extracellularly 

recorded signals as spikes or noise. However, the presented 

NN does not distinguish between different spike-

waveforms and thus is not a sorter. The utility of neural 

network-based spike sorting extends beyond neuroscience, 

as it could be used to process large streams of data 

generated in modern brain-computer interfaces. 

In this work, we show that complex network architectures 

are not strictly necessary to perform basic spike sorting. We 

present an approach using a simple NN that not only 

distinguishes between spike-waveforms from different 

groups but can also discriminate spikes and noise to some 

extent. This can help to improve the overall performance of 

spike sorting, since prior spike detection is not guaranteed 

to be error-free. 

II. Material and methods 
The present noise level in extracellular recordings highly 

depends on the used measuring and filter technique. 

Although other research groups used data with maximum 

noise of 20-40% [3], we investigated noise up to 50% to 

impede classification and impose limits. All noise levels in 

this paper refer to their standard deviation with respect to 

the maximum spike amplitudes. 

II.I. Data preparation 
Eight different groups of center-aligned spikes, each 

containing 17 samples, were generated manually using 

Python. With 2% amplitude variability for the spikes, we 

tried to mimic the real-world problem of cortical single-unit 

measurements. For the same reason, Gaussian white noise 

(GWN) was added to all spikes. 50 samples were chosen 

for the noise signals, which can also be seen as the size of 

the classification window. Therefore, we created six 

different datasets, as noise levels between 0% and 50% 

with a 10% gradation were considered. Different noise 

levels were not mixed within setups. Each dataset contains 

1000 spikes per group. In addition, 1000 signals of pure 

GWN were generated to test whether the network detects 

spike-waveforms present in the signal or not. This leads to 

a total number of nine different classes, which can be seen 

in Fig. 2. They are directly corresponding to the output 

layer activations of the NN, as the highest activation 

indicates the predicted class. We split the dataset for 

training and testing of the NN with a ratio of 5:3. 10% of 

the training set were used for validation during training. 

II.II. Relevant data properties 
It is important to note that we designed the spike-

waveforms with different levels of correlation. Since the 

eight spike-waveforms are four basic signals and their 

respective reflections, there is a complete inverse 

correlation between them for noise-free signals. While the 

groups  1-6  show  high  correlation,  spikes  from  groups 
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Table 1: Precision (P) and Recall (R) of the eight spike groups and a pure signal of GWN for different noise levels 

7 and 8 show low correlation to other groups respectively. 

If the noise level increases, the correlation decreases over 

the entire dataset. This effect is presented in Fig. 1 in the 

form of heatmaps for the average correlation values 

between all considered spike groups. We generated both 

high and low correlated spikes to test whether there are 

differences in classification performance. 

Figure 1: Heatmaps of the averaged correlation matrices 

between the eight spike groups at three different noise levels  

(left: zero noise, middle: 10% noise, right: 50% noise). 

II.III. Neural network 
Python and TensorFlow were used to build our NN. For the 

hidden layer the ReLU activation function was used, while 

the output layer utilizes the Softmax activation function. 

The network architecture can be seen in Fig. 2. The NN was 

trained in a supervised way over 50 epochs separately for 

each considered noise level and tested respectively. For 

compiling, the categorical cross-entropy loss function was 

utilized together with the Adam optimizer. EarlyStopping 

regularization was used to minimize overfitting. If there 

was no reduction in loss within five consecutive epochs the 

model stopped computing. 

Figure 2: A spike-waveform from group 3 with present noise of 

50% gets classified. Each unit in the output layer represents one 

of nine classes (groups 1-8 and pure GWN (N)). 

III. Results and discussion 
To obtain reliable results, we averaged over 100 runs. 

Accuracy was between 89% and 100%, depending on the 

respective noise level, and only small differences between 

classes were observed. To get better insights into the false 

positive and false negative predictions, precision and recall 

were calculated class-wise (Tab. 1.) Here, only results for 

noise levels from 20% to 50% are presented, as 

classifications for lower noise levels led to flawless results. 

Tab 1. clearly shows that the NN generalized better on 

uncorrelated waveforms (groups 7 and 8). Moreover, recall 

revealed that classification performance for GWN highly 

decreased with its level. Here, it must be mentioned that 

spikes from groups 5 and 6 were predicted in 44% of the 

false negative cases at a noise level of 50%. Similar results 

were observed at lower noise levels, as their sharp peaks 

resemble those of pure GWN.  

In order to apply our NN to real brain data, further 

improvements are necessary. In extracellular recordings, 

multiple neurons often fire simultaneously near the 

electrode, leading to temporal overlap. However, this 

cannot be handled by our network at this stage. In addition, 

it would be beneficial if the NN could detect and classify 

unknown spikes that are not part of the training set, which 

also is not possible yet. 

IV. Conclusions 
The obtained results clarify three important things. 1) It is 

possible to distinguish pure GWN and noisy spikes with our 

NN. 2) While the NN can distinguish between different 

spikes and noise for small noise levels, it tends to classify 

noise as spikes above noise of 20%. (Tab. 1, cf. recall). A 

high sampling rate in combination with appropriate band-

pass filtering may reduce misclassifications, since sharp 

spike-waveforms can thus be reduced. 3) Correlated data 

are more difficult for the NN to classify than uncorrelated 

data, which is a problem, as spikes are often highly 

correlated. The results show that a complex network 

structure is not necessary to do basic spike classification. 

However, more complex data, e.g., real brain recordings of 

highly active neural clusters with many overlapping spikes, 

may require further adjustments to our NN, i.e., more 

hidden layers, to perform efficient spike sorting.. 

AUTHOR’S STATEMENT  
Research funding: L. M. Meyer and T. Schanze state that no funding was 

involved. F. Samann is funded by DAAD with Grand No. 57507871. 

Conflict of interest: Authors state no conflict of interest.  

REFERENCES 
[1] R. Quian Quiroga and S. Panzeri, Eds., Principles of neural coding. 

Boca Raton: CRC Press, pp. 61-74, 2013. 

[2] J. Rokai, M. Rácz, R. Fiáth, I. Ulbert, and G. Márton, ELVISort: 

encoding latent variables for instant sorting, an artificial 

intelligence-based end-to-end solution, J. Neural Eng.,  

vol. 18, no. 2021. 

[3] Z. Li, Y. Wang, N. Zhang, and X. Li, An Accurate and Robust 

Method for Spike Sorting Based on Convolutional Neural Networks, 

Brain Sci., vol. 10, 2020. 

[4] D. Issar, R. C. Williamson, S. B. Khanna, and M. A. Smith, A neural 

network for online spike classification that improves decoding 

accuracy, Journal of Neurophysiology, vol. 123, no. 4, 2020. 

 


