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Abstract: Inertial measurement units are widely used for inertial motion tracking (IMT) in numerous applications. Although 

both magnetometer-free IMT and sparse IMT have distinctive advantages, their combination has rarely been achieved. 

Recently, recurrent neural network-based observers (RNNOs) have been successfully used for IMT but under the assumption 

of precisely known chain geometries (segment length, sensor-to-segment positions). However, in practice the geometry is 

generally unknown. We propose RNNOs that estimate the relative pose of three-segment kinematic chains with double hinge 

joints despite unknown chain geometries and which can be used to enable magnetometer-free, sparse, and self-calibrating 

IMT. 
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I. Introduction 
Inertial measurements units (IMUs) are nowadays widely 

applied in a broad range of application domains [1]. These 

applications often involve tracking the motion of a 

concretization of a kinematic chain using magnetometer-

aided (9D) IMUs and one IMU per segment. However, 9D 

IMT should be avoided as distortions in magnetic fields can 

degrade the accuracy of orientation estimates [2]. 

Additionally, omitting individual IMUs—referred to as 

sparse sensor setups—would lead to reduced effort and 

cost. Although magnetometer-free and sparse IMT has 

distinctive application advantages, it has rarely been 

achieved so far [3]; mainly, as it is prone to lead to non-

observable systems, in which multiple motions may 

generate the same measurements.  

Recently, recurrent neural networks (RNNs) have been 

successfully used to analyze the observability properties of 

double hinge-joint systems [4]. There, an RNN-based 

observer (RNNO) is able to estimate the relative 

orientations of a three-segment kinematic chain with 

double hinge joints and only a sparse set of two 6D IMUs 

in simulation. It was assumed that the geometry of the 

kinematic chain (lengths of segments, sensor-to-segment 

positions) is known. This is a major restriction, as in 

practice, the geometry may well be unknown and 

calibration is time-consuming and error-prone. 

Here, we investigate whether RNNO can estimate the 

relative pose of a three-segment kinematic chain with 

double hinge joints across a wide range of chain geometries 

from only sparse sensors, without magnetometer readings, 

and without any prior knowledge of the chain geometry at 

hand. 

 

Figure 1: The RNN-based observer (RNNO) is trained on 

automatically generated data of random chain motion performed 

by a chain with random geometry. It learns to estimate relative 

orientations of a three-segment kinematic chain connected by 

double hinge joints from measurements of two 6D IMUs. After 

training, RNNO can estimate an unknown chain motion 

performed by a wide range of unknown chain geometries. 

II. Problem Formulation 
We consider a kinematic chain consisting of three segments 

with frames 𝒮1, 𝒮2, 𝒮3 connected by double (two) hinge 

joints with known and non-parallel joint axes directions. 

The complete geometry of the chain, including the segment 

lengths and sensor-to-segment positions, is unknown. Only 

the two outer segments are equipped with 6D IMUs and 

their measurements are combined into one signal 𝑦(𝑡) ∈
ℝ12 defined as y(t) = (ω1(t)⊺, ρ1(t)⊺, ω3(t)⊺, ρ3(t)⊺)⊺ 

where 𝜔𝑖(𝑡), 𝜌𝑖(𝑡) denote gyroscope and accelerometer 

measurements of the first and second IMU. Subscripts are 

used to refer to segment frames. We assume that sensor-to-

segment orientations are known. The relative pose of the 

kinematic chain is fully determined by the state 𝑥(𝑡) ∈ 𝐻2 

with 𝑥(𝑡) = ( 𝑞⊺
𝒮2(𝑡)
𝒮1(𝑡)

, 𝑞⊺
𝒮2(𝑡)
𝒮3(𝑡)

)
⊺

 where 𝑞 ∈ 𝐻𝒮2(𝑡)
𝒮1(𝑡)

 denotes 

the unit quaternion that represents the orientation between 
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segment one and two. We assume that initial relative 

orientations are known. The goal is then to estimate the 

current relative pose 𝑥(𝑡) from the current and previous 

measurements 𝑦(1: 𝑡). 

III. Proposed Method 
Our method consists of an RNNO which is trained on an 

endless stream of data generated just-in-time using the 

random chain motion generator (RCMG) as proposed in 

[4]. RNNO learns to estimate the relative pose of the 

kinematic chain from IMU measurements that include 

realistic simulated noise and bias levels. The RCMG can be 

viewed as function that given a random seed computes the 

sequences 𝑥(1: 𝑇) and 𝑦(1: 𝑇) with a sequence length of 

𝑇 = 60 seconds. Further details on the internals of the 

RCMG and the network architecture of RNNO can be 

found in [4]. In addition to that, we extend the RCMG to 

simulate chain motion performed by a chain with a 

randomly drawn geometry. The chain geometry is defined 

by nine parameters, two 3D vectors defining the sensor-to-

segment positions and three segment lengths. Here, we 

extend RCMG with functionality enabled through a flag 

randGeo. If set, RCMG (internally) draws each of the nine 

parameters that define the chain geometry of the chain to 

be simulated i.i.d. from ∼ 𝒰(−0.5,0.5)m. The signature of 

the RCMG is RCMG(seed: integer, randGeo: 
boolean). 

IV. Results and Discussion 
We show that the proposed extension to the RCMG enable 

RNNO to generalize across chain geometries and estimate 

the relative pose of chain motion performed by a wide 

range of chain geometries. Fig. 2 shows the estimation 

performance of the trained RNNO on one example 

sequence. RNNO has no prior knowledge of the chain 

geometry that generated the sequence, still, the predicted 

joint angles always track the true joint angles closely. Fig. 

3 shows the effect of the randGeo flag on the trained 

RNNO. If set, RNNO can achieve a low root-mean-squared 

(angle) error (RMSE) when evaluated on a wide range of 

chain geometries. 

Figure 2: Trained RNNO’s performance on one example 

sequence. RNNO can track both hinge joint angles of a three-

segment kinematic chain using measurements from a sparse set of 

IMUs without knowledge of the chain’s geometry. 

Figure 3: Trained RNNO’s performance of the first and second 

hinge joint angle. For the four leftmost boxplots RNNO has been 

trained for 1500 episodes containing each 2048 sequences 

sampled from an endless stream of sequences of random chain 

motion but performed by a chain with one fixed geometry, i.e. the 

flag of the RCMG, that randomizes chain geometry, is unset. 

Whereas on the two rightmost boxplots RNNO has been trained 

equally long but on sequences where for each sequence the chain 

geometry is drawn randomly. To evaluate the trained RNNO 2048 

(new) sequences are generated using the RCMG with the flag 

either set or unset. The Asterisk denotes one of many seeds. The 

proposed extension enables RNNO to generalize across a wide 

range of chain geometries. 

V. Conclusions 
We have used RNNOs to enable magnetometer-free, 

sparse, and self-calibrating inertial motion tracking. To the 

best our knowledge this is the first method which combines 

these key properties and their advantages, and it marks an 

important step towards making inertial motion tracking 

more cost-efficient, effortless, and usable for a broad range 

of existing and unexplored applications. 

Future research aims to achieve a thorough experimental 

validation and to extend RNNO to joint setups that include 

higher degree of freedom joints and to generalize across 

joint axes and sensor-to-segment orientations. 
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