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Abstract: Spinal cord injury and multiple sclerosis can affect a patient’s walking ability and can be accompanied by spasticity. 

Transcutaneous spinal cord stimulation (tSCS) aims at reduction of spasticity and improvement of locomotion. This work 

investigates a machine learning approach to evaluate a chosen dorsal electrode position. If the position is classified as 

unsuitable for therapy, a recommendation for displacement is made. Classified EMG data of the posterior root muscles, evoked 

by a series of double-stimulation pulses with increasing intensity, and anthropometric data from 18 subjects were used to train 

a decision tree classifier. An average accuracy of 78% regarding a ground truth algorithm was observed.  
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I. Introduction 
Medical conditions such as spinal cord injury (SCI) or 

multiple sclerosis (MS) decrease or even inhibit the 

walking ability of affected patients due to leg paralysis and 

spasticity. The limitations of movement accompanied by 

both conditions can severely decrease the quality of life. 

Transcutaneous spinal cord stimulation (tSCS) can help to 

reduce spasticity and improve movement control of the 

lower extremities [2]. Before treatment with tSCS, a 

suitable electrode position has to be located. Typically, a 

clinical calibration takes about 7 to 15 minutes [1], when 

using three to four self-adhesive electrodes for stimulation 

as well as electromyography (EMG) for reflex 

measurements (illustrated in Fig. 1).  

This procedure is time-consuming and a high amount of 

material is necessary, which makes the process less 

appealing and economical. We aim to improve the 

electrode position validation procedure by placing only one 

of the electrodes in combination with a classification 

algorithm. The suggested method assesses if the electrode 

position is acceptable or should be moved along the rostal-

caudal axis to a new position.  

 

Figure 1: Left: Dorsal electrodes and abdominal counter elect-

rode; right: EMG position quadriceps (Q) and triceps surae (TS). 

The assessment is based on a decision tree algorithm 

regarding muscle reflexes in the EMGs and anthropometric 

data from healthy individuals and SCI patients. 

II. Material and methods 
For the machine learning, data sets from 13 healthy subjects 

(5 females, 8 males, age 30.4 ± 6.8) and five subjects with 

SCI (2 females, 3 males, age 47.4 ± 12.0) in supine position 

were used. Five of the healthy and one of the SCI subjects 

were included twice, whereas the measurement trials took 

place on different days and with slightly different electrode 

positions. Therefore, these measurements are treated as 

obtained from separate subjects. This adds up to 24 

trials/subjects. For each trial, either all four or the lower 

three electrodes from Fig.1 were attached. At each position, 

double stimulations with an interpulse interval of 50ms 

were conducted with different current amplitudes. The 

current amplitudes were increased in steps of 5mA, and the 

applied maximum varied between subjects based on their 

personal tolerance (max. 35-80mA). To detect posterior 

root muscle reflexes, two EMG sensors were placed on 

each leg, recording the surface activity of the left and right 

triceps surae and quadriceps muscle group as shown in Fig. 

1. For each current amplitude and muscle group, the EMG 

signal can be labelled as reflex response, no response or 

muscular response. Based on the occurrence of reflex 

responses at the different electrode positions, the ground 

truth algorithm introduced in [1] determines the best 

position. The lowest current amplitude of the best position 

which has any reflex response is multiplied by 0.9, to keep 

the therapy intensity under moto threshold [1]. This current 

Î is used for treatment. A total of 82 electrode positions 

were included. According to the ground truth algorithm, 24 

were suitable, 32 too high, and 26 too low on the spine, with 

reference to the optimal position.  
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For assessing the suitability of a single electrode position, 

a decision tree classification was implemented based on the 

scikit learn Python library [3]. Accordingly, the following 

three input parameters (features) were defined, inspired by 

[1]: 

• Nmax: The maximum number of muscles with an 

observed reflex response after a double pulse 

stimulation 

• Imbalance: The number of reflex responses in Qs 

subtracted by the number of reflex responses in TSs 

over all stimulation intensities 

• ∆Î: The difference between current amplitude, at 

which the first reflex is observed, and the expected 

current amplitude ÎBMI for treatment 

ÎBMI is the expected value of Î based on an observed 

correlation of a subject’s Î and its body mass index (BMI) 

(regression coefficient = 0.87). The regression line for 

calculating ÎBMI uses the values of the healthy subjects.  

A two-stage decision tree classification is determined based 

on input parameters, the Gini impurity as weight function, 

and the labels of the ground truth algorithm. A first decision 

tree is trained discriminating between acceptable and 

unacceptable positions. Then a second tree is trained on all 

unacceptable positions, which distinguishes whether a 

position is too high or too low. For both stages, the optimal 

number of leave nodes is determined by a hyper parameter 

optimization. The classification performance was evaluated 

by a leave-one-subject-out cross-validation to assess the 

generalisation of the proposed algorithm. 

 

 

Figure 2: Example of a decision tree from the cross-validation. 

 

Figure 3: Confusion matrix: True class based on [1], predicted 

class based on the leave-one-subject-out cross-validation. 

III. Results 
The determined number of leave nodes is three for the first 

stage and two for the second stage. An example tree can be 

seen in Fig.2. Data sets are considered as acceptable if the 

Nmax equals four and ∆Î is smaller than 2mA. Therefore, an 

acceptable electrode position can only be found if reflexes 

occur in all four muscles (Nmax = 4). At stage two the 

positions are labelled as “too high” if the Imbalance is 

above or equal -1 and “two low” otherwise. The tree 

structure was stable for the cross-validation, only the 

parameter threshold of ∆Î varied slightly. Considering the 

results shown in Fig. 3, it can be seen that in the cross-

validation 64 of the 82 samples were classified consistent 

with the ground truth. This equals an accuracy value of 

78%. 14 out of 18 mistakes result from the first stage. Since 

electrode position 3 is optimal in 13 of the 18 subjects, it is 

used as the starting position for the proposed method. Using 

the decision tree, the correct position is identified directly 

or after one change of position according to the algorithm’s 

recommendation in 15 of the 24 subjects. In 5 subjects all 

positions are classified as unacceptable. If the ground truth 

algorithm is used in these special cases, the optimal 

position will be found as well. In the remaining 4 subjects 

a non optimal position is classified as acceptable, which 

yields an error of 16.7%. 

IV. Discussion and Conclusions 
The implemented classifier has a lot of potential to 

minimize the preparation time prior to the tSCS treatment. 

In some cases different electrodes are selected than 

suggested by the ground truth algorithm. However, if all 

four muscle groups show reflexes and the therapy current 

is close to ÎBMI, it might still be a decent second choice. The 

introduced procedure and thresholds, especially of stage 

one, including the correlation assumption between the BMI 

and the current amplitude should be validated with a larger 

data set.  
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