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Abstract: Interconnected medical devices enable new therapies and automate existing ones. Due to various manufacturers and 

interfaces, interoperability needs to be enabled with the help of auxiliary hardware. Since functional safety is indisputably 

critical, verifiability is essential, which is often neglected by state-of-the-art medical hardware platforms. We propose the 

ASMO hardware platform, which provides various interfaces to enable interoperability and where the workload is distributed 

such that the complexity of each unit can be reduced, while still providing enough capabilities for embedded machine learning. 

By using microcontrollers running an embedded real-time operating system, the verifiability can be further increased. The 

intrinsically created distributed architecture additionally allows for flexible rearrangement and efficient extension if needed. 
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I. Introduction 
Interconnected medical devices will be essential to enable 

new therapies and improve already existing ones. 

Following this approach, we identified two challenges: 

Interoperability and Verifiability. Due to various 

manufacturers and interfaces, direct interoperability of 

medical devices is not always guaranteed. Addressing the 

safety of the interconnected medical application, 

verifiability is essential. It depends, among other aspects, 

on the complexity of the system, which is increasing with 

the interconnection of medical devices. In intensive 

medical care, patients are in a critical state but not always 

under direct monitoring of the staff, such that malfunctions 

must be prevented under any circumstances. Using e.g. a 

Raspberry Pi to enable interoperability is limited in terms 

of available interfaces and verifying a Linux operating 

system (OS) is difficult due to e.g. pre-built libraries or the 

high complexity and memory model of the Linux kernel 

[1]. 

In this work, we propose a decentralized and modular 

platform, which we termed ASMO hardware platform. 

Each medical device is attached to an individual 

microcontroller board. To enable the interoperability, the 

boards offer interfaces for various communication 

principles. The hardware platform design also considers 

verifiability. Using a microcontroller supported by 

embedded real-time operating systems (RTOS), which only 

contain a small code size and are solely based on open-

source libraries, allows the verification of the entire used 

software system. Furthermore, reducing the complexity of 

the system will be beneficial for the verification of the used 

algorithms. We distribute the tasks and workload onto 

multiple smaller units. This enables the plain alteration of 

the created cyber medical system by design. Each unit will 

have a comparable lower complexity without reducing the 

overall processing capabilities of the whole system. 

II. Related Work 
There are already commercially available hardware 

platforms to enable interoperability, like Capsule from 

Philips [2] or SCALEXIO by dSPACE [3]. Using Capsule, 

microcontroller boards are attached to medical devices to 

read measurements. However, the system cannot close a 

feedback loop to control devices. SCALEXIO provides the 

LabBox, which also fulfills various input/output (IO) 

requirements and enables a feedback loop. The LabBox 

offers a modular design by providing board slots for 

different functionalities, like analog-digital (AD) / digital-

analog (DA) converters, Controller Area Network (CAN), 

Ethernet, Serial Peripheral Interface (SPI), etc. 

Nevertheless, due to the closed design, it is not possible to 

easily adjust the Box to fulfill custom interface needs. 

However, there are also open-source solutions like 

OpenICE [4], where so-called dongles (Raspberry Pi’s) are 

attached to the medical devices. The dongles itself are 

interconnected via Ethernet. One restriction is the limited 

flexibility regarding the interfaces due to the prebuild 

design of the Raspberry Pi’s. Further, they are operated 

with a Linux OS, which complicates the verification 

compared to an embedded RTOS as stated earlier. This also 

applies to the platform developed by the Technical 

University of Munich [5] and the SyncBox [6], where one 

main unit, based on a Linux OS, is used to connect to the 

medical devices. In addition, those centralized setups 

further decrease the verifiability due to the increased 

complexity of the code of the main unit, handling all tasks. 

Moreover, adding new devices is more difficult since the 

main unit will eventually run out of resources. 

III. ASMO Hardware Platform 
With the sketched challenges and the limitations in mind, 

we developed the ASMO hardware platform (derived from 

Greek for safe translation), which can be used during the 
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development stage, but also forms a basis for possible 

subsequent clinical use. A resulting ASMO board is a 

microcontroller board with various additional peripherals, 

which is directly attached to the medical device. The layout 

of such a board is presented in Fig. 1 (the schematics are 

available in [11]). To enable the use in various 

environments, it can be flexibly powered with 5-12V. For 

fast development, there is a Joint Test Action Group 

(JTAG) interface for debugging, a rotary button for ingoing 

and a display for outgoing information, as well as an SD 

card slot to store data persistently. To be able to run 

embedded RTOSs like FreeRTOS [7] or ChibiOS [8], we 

chose the STM32 F767ZI [9] microcontroller unit (MCU), 

which is supported with its ARM Cortex-M7 32-bit RISC 

core. This MCU offers enough computational power for 

embedded machine learning with a focus on energy 

efficiency, data security and low latency [10]. 

 

Figure 1: An ASMO board with various interfaces to enable 

interoperability and CAN / Ethernet for interconnectivity. 

Various interfaces can be placed on the ASMO board to 

enable interoperability. For instance, there is an RS-232 

and a USB interface. Moreover, there is an additional 

external AD/DA converter supporting 5V. Furthermore, 

enabling custom communication protocols is possible by 

simply mapping general-purpose IOs, SPI pins or AD/DA 

channels to a pin header. The general ASMO board is 

useful in the development stage, while specialized ASMO 

boards, reduced to essential interfaces can be designed for 

productive operation. The boards can be interconnected via 

CAN or Ethernet. For Ethernet, we use message 

prioritization via the IEEE 802.1p standard. Modularity is 

guaranteed, thanks to the abstraction layers provided by the 

embedded RTOSs, which e.g. enable an easy upgrade to a 

more powerful microcontroller, as we already proved in the 

past, when upgrading from an AT91SAM7 MCU. 

Modularity is also important regarding the hardware setup. 

In our decentralized system, the devices are connected to 

individual ASMO boards, which are interconnected via the 

dedicated communication interface. This setup reduces the 

complexity of code that needs to be executed on a single 

board, since tasks are distributed to multiple ASMO boards 

without reducing the overall processing power. Thus, code 

modularity is already enforced by this decentralized 

hardware setup. Thanks to the reduced complexity of each 

unit and only having a small code size due to the use of an 

embedded RTOS, we were able to apply various formal 

methods using Polyspace by the MathWorks.  

We connected the ASMO platform to different devices and 

peripherals. RS-232 was useful to connect, among other 

devices, to a Datex-Ohmeda AS/3 patient monitor, a 

Siemens Servo 300 ventilator, a TERUMO CDI 500 blood 

parameter monitoring system, a Reglo ICC roller pump 

from Ismatec and a SonoTT flow sensor from em-tec. Via 

Ethernet, it was possible to communicate with a MX500 

patient monitor from Philips. Ethernet and RS232 are 

standardized interfaces, which are widely available. 

However, more custom solutions were necessary, for 

instance to connect to a Transonic HT100 flowmeter or a 

ESCON 50/5 engine control unit, which in turn was used to 

control a rotary blood pump. Both only offer AD/DA 

channels and custom pins for the communication. Thus, we 

designed pin headers, which can be directly placed on the 

ASMO board and then wired to the associated device. 

IV. Conclusion 
In this work, we proposed the ASMO hardware platform, 

which was developed considering the limitations of the 

related work, like customizability and verifiability. It 

enables interoperability by offering various interfaces and 

a standardized communication channel to interconnect the 

ASMO boards. The board layout is publicly available and 

can easily be adapted. To enable verifiability, which is 

essential for the functional safety of medical devices in 

intensive care, we proposed a decentralized setup with the 

workload distributed to multiple boards and thus reducing 

the complexity of each unit and allowing for efficient 

extension of the whole setup. Further, we emphasized the 

importance of running an embedded RTOS with a small 

code size and open-source libraries to ensure the 

verifiability of subsequently developed medical devices. 
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