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Abstract: The ongoing outbreaks of the Ebola disease in the Democratic Republic of Congo demand a faster medical reaction. 

To accelerate the search for an antiviral, processes need to be automated. Previously, algorithms to automatically detect, track 

and analyze subviral particles in fluoroscopic image sequences were presented. Thereby, a linear Kalman filter algorithm is 

used to improve the tracking. In this publication the predictions of the linear and an extended Kalman filter are compared. 

Both approaches are tested on a real subviral particle track and show that an extended Kalman filter is suitable for the complex 

motion patterns of subviral particles. 
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I. Introduction
The ongoing outbreaks of the Ebola virus cause a high 

death toll. By the rapidly increasing globalization there also 

is a certain danger for a pandemic spread of this disease. To 

stop the current epidemic and to prevent a possible global 

outbreak the research for an antiviral medicine must be 

accelerated. The research for antivirals requires a profound 

knowledge of the pathogens. Therefore, a high number of 

infected cells need to be analyzed. 

In cooperation with the Institute of Virology, Philipps-

University, Marburg, algorithms for an automated analysis 

of subviral particles in fluorescence microscopy image 

sequences were developed. Attention was spent to the 

analysis of the motion patterns of the subviral particles [1, 

2, 3]. This demands an accurate detection- and tracking-

algorithm. Thereby, a big challenge is to design a tracking 

algorithm that is robust against image noise, low contrast 

and overlapping structures. Especially the latter can cause 

big interruptions within a track. To enable a high-quality 

statistical evaluation of the particle motion these 

interruptions have to avoided. Good results were achieved 

with a previously published linear Kalman filter-based 

algorithm [4]. 

As subviral particles have a highly nonlinear behavior [5], 

there are still some cases in which the linear Kalman filter 

(LKF) is not suitable, like reconstructing a gap that is 

interrupted within a curved section. In this publication the 

benefits of an extended Kalman filter (EKF) with a 

nonlinear motion model are investigated [6]. Both, the EKF 

(new) and LKF (old) are tested on a real subviral particle 

track to compare their ability in reconstructing data within 

measurement-gaps. 

The results show a similar accuracy for both methods (EKF 

and LKF). The article ends with a Discussion sections. 

II. Material and methods
This section starts with the presentation of the applied 

Kalman filter. The testing data is presented which are a real 

subviral particle track from a fluorescence microscopy 

image sequence. 

II.I. Extended Kalman filter model
A Kalman filter can predict the state of a system based on 

the previous measurements. Thus, it can be used for two 

aspects: 1st it can estimate the current state and thus 

compensate temporal absence of measurements; 2nd the 

estimation can be used to correct the current measurement 

which results in the Kalman’s filter-characteristic.  

The EKF can be divided into two steps: 

1st Predict 

�̃�𝑘 = 𝑔𝐴(𝑠𝑘−1) (1) 

�̃�𝑘 = 𝐽𝐴𝑃𝑘−1𝐽𝐴
𝑇 + 𝑄 (2) 

2nd Correct 

𝐾𝑘 = �̃�𝑘𝐽𝐻
𝑇(𝐽𝐻�̃�𝑘𝐽𝐻

𝑇 + 𝑅)−1 (3)

𝑠𝑘 = �̃�𝑘 + 𝐾𝑘(𝑧𝑘 − 𝑔𝐻(�̃�𝑘)) (4)

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐽𝐻)�̃�𝑘, (5) 

with 𝑠, the state vector; 𝑔𝐴, the nonlinear model matrix; 𝑃,

the covariance matrix; 𝐽𝐴,𝐻, the Jacobi matrices of the

model 𝐴 and measurement vector 𝐻; 𝑄 and 𝑅, the process 

and measurement noise matrices; 𝐼, unit matrix; 𝐾, the 

Kalman gain; and z, the current measurement. 𝑠 and 𝑃 are 

the corrected versions of the predicted �̃� and �̃�. [6] 

While the common Kalman filter relies on a linear motion 

model with constant velocity, the EKF can depict nonlinear 

models in its model matrix (Eq. 1). A Constant Turn Rate 

and Velocity (CTRV) model in polar domain was chosen 

[7]. The state vector 𝑠 is given by: 
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𝑠 = [𝑥, 𝑦, 𝛷, 𝑣, 𝜔]𝑇 

The system states in 𝑠 correspond to: 

𝑔(𝑠) =

[

𝑣

𝜔
(𝑠𝑖𝑛(𝜔𝑇 + 𝛷) − 𝑠𝑖𝑛(𝛷)) + 𝑥

𝑣

𝜔
(−𝑐𝑜𝑠(𝜔𝑇 + 𝛷) + 𝑐𝑜𝑠(𝛷)) + 𝑦

𝜔𝑇 + 𝛷
𝑣
𝜔 ]

(7) 

The tracking algorithm detects the positions 𝑥 and 𝑦 of the 

subviral particles. Thus, the measurement matrix is: 

𝐻 = [1,1,0,0,0]𝑇 (8) 

II.II. Gap reconstruction
The EKF is applied to one subviral particle track, detected 

using the previously presented algorithm [4]. The track has 

a complex motion pattern, which has been perfectly 

detected. (Fig. 1). To test the prediction capability of the 

EKF, the track is interrupted by a gap with a duration of 

five frames – five measurements are missing. The gap 

successively “slides” over each track position (Fig. 1, grey 

box).  

Figure 1: Subviral particle track: A real subviral particle track 

with various motion patterns (ellipses) is analyzed. To test the 

gap-closing performance of the LKF/EKF a gap-window 

subsequently slides over all track positions. 

The EKF is applied to the whole track for each gap-

position. Thereby, it is applied in forward and backward 

direction, as there is no need for a real-time application (e.g. 

[4]). The mean square error between LKF- and EKF-

prediction and original track within the gap area is 

measured. Thereby, the gap-closing performance of the 

LKF/EKF is tested for each motion pattern. 

III. Results and discussion
The filtering and prediction quality of an EKF with CTRV-

model is tested on a real subviral particle track. 

III.I. Gap reconstruction
Fig. 2 shows that the prediction of the new EKF and old 

LKF have similar results. Both can reconstruct interrupted 

tracks with a small deviation to the original track (mean 

EKF: 0.60; mean LKF: 0.53). This enables a high grade of 

data reconstruction in case of insufficient tracking caused 

by inadequate image quality with both Filters. 

IV. Conclusions
The advantage of applying an EKF were evaluated. The 

ability of reconstructing lost data is a huge advantage for 

the automated analysis of subviral particles in often highly 

noisy image data. Both, the LKF and EKF work similar 

accurate. The filters’ accuracy profits especially by the  
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Figure 2: Gap reconstruction: A sliding gap-window is applied 

to the track in Fig. 1. The mean distances between original track 

and the prediction �̃� of EKF (black) / LKF (grey) within the 

produced gaps are shown in relation to the gap position 

(averages: lines in corresponding colors). The mean distance 

between original track and EKF correction 𝑠 is shown for the 

same positions (black). 

forward and backward processing of the track. In future 

work, evaluating the turn-rate model parameter 𝜔 of the 

EKF could help understanding and describing the subviral 

particles’ motion behavior. Other motion models should be 

considered as they may match the subviral particle behavior 

more than the CTRV-model. Thereby, the initial 

parameters to set up the EKF should be also further 

investigated. 
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