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Abstract: Denoising is the process of removing noise of a noise contaminated signal, noise extraction is to distill out noise. This can 

be done by using autoregressive (AR) filters, if the signal was generated by an AR process and if the AR coefficients are known. We 

introduce a sparse AR denoising/noise extraction method by using Yule-Walker (YW) equations in combination with l1-regularization 

and compare the results with a ‘classical’ YW based denoising/noise extraction. Simulations show that the novel approach is superior 

compared to the classical one for short sparse AR signals. The novel approach does not require AR order estimation and may be useful 

for supervised or automated denoising/noise extraction of sparse AR signals.  
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I. Introduction
All signal recording and processing devices produce noise. 

Denoising or noise reduction is the process of removing noise 

of a noise contaminated signal, whereas noise extraction is to 

distill out noise. Signal denoising and noise extraction can be 

viewed as two sides of a coin and the related methods may be 

classified into three categories: 1) time-frequency analysis, 2) 

matrix factorization approaches, and 3) filtering techniques. 

Time-frequency analysis methods can be used to remove or to 

extract noise both in time and frequency domain, e.g. by using 

wavelet transformation [1] or empirical mode decomposition 

[2]. Matrix factorization based approaches use signal space 

analysis. An example is denosing by singular value decom-

position [3]. The third category uses filters to remove the 

unwanted and to bypass the wanted signal [4]. Filtering can be 

done by an adaptive filter that is capable to adjust its para-

meters to signal’s properties. A basic approach may use auto-

regressive (AR) filters, which requires ample knowledge or 

adequate estimation of the AR coefficients. Here we present a 

novel ansatz that uses sparse AR modelling for signal denosing 

and/or noise extraction.  

II. Material and methods
The subsequently presented sparse AR denoising/noise 

extraction method relies on the Yule-Walker (YW) equations 

and uses l1-regularization to estimate sparse AR coefficients. 

II.I. AR modelling
The idea behind classical AR modelling of signals is to explain 

the present value by a linear combination of past values plus a 

noise or error term. Thus, an AR model of order p may be 

written as 

𝑥𝑡 = 𝑎1𝑥𝑡−1 + 𝑎2𝑥𝑡−2 + ⋯ + 𝑎𝑝𝑥𝑡−𝑝 + 𝜀𝑡 , (1) 

where xt  is the signal value at time t, ak, k = 1, 2, …, p, are the 

AR coefficients, and ɛt  is assumed to be white noise. 

II.II. Estimation of AR coefficients
A classical approach to estimate the AR coefficients is to solve 

the YW equations  

𝛾𝑚 = ∑ 𝑎𝑘
𝑝
𝑘=1 𝛾𝑚−𝑘 + 𝜎𝜖

2𝛿𝑚,0 , (2) 

where γm denotes the covariance of xt with xt-m, δ is the 

Kronecker delta. Equation (2) represents p+1 linear equations, 

p equations to calculate the AR coefficients and, finally, one to 

estimate the noise variance by using the calculated AR 

coefficients. Observe that the estimation of the covariances is 

affected by errors due to the limited signal length, thus the AR 

parameters are also erroneous. This affects the prediction and 

thus the denoising/noise extraction capabilities of an AR based 

denoising/noise extraction approach significantly.  

II.III. AR based denoising and noise extraction
Assume that all AR coefficients are known exactly. If so, then 

�̂�𝑡 = 𝑎1𝑥𝑡−1 + 𝑎2𝑥𝑡−2 + ⋯ + 𝑎𝑝𝑥𝑡−𝑝 (3) 

is not only a prediction of the true value, it may even be 

considered as the denoised signal value at time t, provided that 

the previous signal values are due an AR process of order p. 

Doing this for all possible time points yields a denoised signal. 

If the AR coefficients are inaccurate estimates, then the 

denoising will be poor. If the prediction is perfect, then the 

noise can be simply obtained by 

𝜀𝑡 = 𝑥𝑡 − �̂�𝑡 . (4) 

II.IV. Sparse AR based denoising
Equivalent to estimate the AR coefficients by solving the YW 

equations (2) is to solve 

min
𝒂

1

2
‖𝜞𝒂 − 𝜸‖2

2 , (5)
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where Γ is the covariance matrix, a is the AR coefficient 

vector, γ is the covariance vector. Note, if the true a is sparse, 

then the solution of (5) is generally not sparse [5]. By solving  

min
𝒂

1

2
‖𝜞𝒂 − 𝜸‖2

2 + 𝜆‖𝒂‖1 (6) 

we can obtain a sparse solution for psparse AR ≥ ptrue [6]. Note that 

the solution depends on the l1-regularization parameter λ. 

II.V. Numerical experiments
All programmings were done by using Scilab 5.5/6.0. Sparse 

AR signals were generated for various orders and Gaussian 

white noise. Equation (5) was solved by using Levinson algo-

rithm for classical YW based denoising. (6) was solved by 

using the Beck-Teboulle proximal gradient algorithm, which is 

also known as FISTA [7, 8]. 

Figure 1: Noise extraction of a simulated sparse autoregressive 

signal. Top graph: original Gaussian white noise time course. 

Middle and bottom graphs show time courses obtained by classical 

and sparse YW based noise extraction. The parameters are listed in 

Table 1. Since the order of the AR process is 10, the noise 

reconstructions start with t = 11. Observe that the sparse noise 

extraction is better than the classical one. 

Table 1: True and estimated AR coefficients of a sparse 10th order 

AR signal consisting of 50 data points. Observe that the classically 

YW estimated AR coefficients are not sparse. Note that the order 

selection for classical YW coefficient estimation is optimal.  

 True ak 

-0.6 0.4 0 0 0 0 0 0 0 -0.2

 YW estimated ak 

-0.8 0.69 -0.33 0.14 0.13 -0.22 0.15 -0.04 -0.02 -0.15

 Sparse YW estimated ak 

-0.53 0.32 0 0 0.08 -0.05 0 0.02 0 -0.2

III. Results and discussion
Under the assumption that the signal to be processed is sparse, 

i.e. the elements of the true AR coefficient vector are mostly
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zero, sparse AR denoising/noise extraction is superior to clas-

sical YW based denosing/noise extraction, especially for a 

short signal. Fig. 1 shows a noise extraction example obtained 

for a sparse AR signal consisting of 50 data points. Table 1 lists 

true and estimated AR coefficients. Note that the classical YW 

approach yields non-sparse AR coefficients, whereas the novel 

approach does it much better. The standard deviations of the 

difference obtained from true and estimated AR cofficients are 

0.20 for classical YW and 0.05 for sparse YW approach. The 

standard deviations of true minus estimated noise time courses 

are 0.36 for classical and 0.15 for sparse YW noise extraction. 

This shows that the sparse approach is better, and, in additon, 

we find that the sparse YW signal denoising is superior com-

pared to the classical YW approach. This difference diminishes 

when much longer signals are processed. In addition, the 

longer the signal, the better the AR coefficient estimation – for 

both approaches. 

If the number of the signal values is high, then both methods 

are, so to speak, equal. This is due to the fact that in such a case 

the covariance estimates are much more accurate. Note that the 

accuracy of the covariances influences both AR coefficient 

estimation procedures and thus the denoising/noise extraction 

quality crucially. However, the setting of the regularization 

parameter must be done carefully. If not, the sparse YW 

coefficient estimation approach can produce less good 

estimates, i.e. suboptimal denoising/noise extraction results. 

Finally we note that the introduced sparse AR estimation 

procedure does not require an AR order estimation process like 

AIC or BIC [9], but requires psparse AR ≥ ptrue.   

IV. Conclusions
We introduced sparse AR denoising/noise extraction. First 

results suggest that the presented approach can be useful for 

supervised or automated denoising or noise extraction of a sig-

nal generated by a sparse AR process. Future work should pay 

attention to signal driven regularization parameter estimation 

and to statistical evaluation with simulated and real data.  
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