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Abstract: In this paper, we study potentials of machine learning in terms of Gaussian processes (GPs) to learn optoacoustic 

(OA) waves generated in eye globe during retina laser therapy. This can be utilized to improve temperature measurements for 

feedback laser control and to understand the tissue properties of the irradiated sites on the retina. The treatment of each site 

is performed in two phases: The first one is used for GP learning based on measurements from an ultrasonic transducer and 

its dynamical model, then, the learned GP is employed for estimating the waves during the second phase where the treatment 

process is activated. The results demonstrate the effectiveness of the approach.  
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I. Introduction
An optoacoustic (OA) approach has been recently 

introduced [1] for providing a noninvasive real-time 

monitoring of retinal tissue temperature during laser 

treatment, which allows feedback control approaches to 

regulate the temperature rise [2]. The idea is to repetitively 

irradiate the retina with laser pulses, which excite the 

irradiated spot to generate bipolar OA pressure waves 

propagating through the globe of the eye, which can be 

detected at the cornea via a transducer. The amplitude of 

such wave is proportional to the temperature to be obtained 

of the irradiated spot via a so-called Grüneisen coefficient. 

However, it is very difficult to detect the amplitude of an 

OA wave from the noisy signal of the transducer, which 

includes its dynamics as well as its response to other 

reflections in the medium. Therefore, heuristic ways are 

often used in practice, potentially leading to large errors. 

In this work, we propose Gaussian processes (GPs) to learn 

these OA waves given the measurements of the transducer. 

This approach will have an important impact on reducing 

errors of temperature measurements, which are used for 

feedback control. Moreover, such waves can carry valuable 

information about the optical properties of the irradiated 

sites and the media propagating through, which can be 

utilized as diagnostic information, such as level of 

oxygenation in tissue or its structure information [3]. 

II. Material and methods
For gathering the data, the experimental setup consists of a 

treatment laser, a pulsed laser and an annular piezo-

transducer. We consider ex vivo experiments on pig eyes. 

A two-phase treatment is proposed for each irradiated spot: 

in the first phase, a GP learns the OA waves generated from 

the associated irradiated site at a nominal temperature. 

Then, the learned GP can be used to estimate the waves 

thereafter during the second (treatment) phase under closed 

loop control. For learning or estimation, the transducer 

dynamics and its measured signal are provided to the GP. 

The learning phase can be repeated upon the change of the 

treated spot. Given the GP estimates, the associated 

temperatures can be obtained directly using the Grüneisen 

coefficient without any extra heuristic.  

II.I. Modeling
The shape of OA waves is important for assessment and 

analysis. However, it is difficult to record its shape 

experimentally. To describe its emission and propagation 

we use the photoelastic wave equation [4] 

𝛻2𝛹 −
1

𝑐2

𝜕2𝛹

𝜕𝑡2 =
𝛤

𝜌𝑐2 𝑆(𝑥, 𝑦, 𝑧, 𝑡),      𝑝(𝑡) = −𝜌
𝜕𝛹

𝜕𝑡
,    (1) 

where Ψ is the velocity potential, ∇2 is the spatial Laplacian

operator, 𝑐, ρ are the speed of sound and the density in the 

medium, respectively, Γ is the Grüneisen coefficient and 

𝑆(𝑥, 𝑦, 𝑧, 𝑡) is a source term indicating heat deposited per 

time and volume related to tissue and applied laser pulse. 

The solution of (1) gives the time evolution of an OA wave 

at an observation point on front of the irradiated site. To 

obtain the resultant OA waves, which excite the transducer 

surface, its geometry should be considered. Using the 

approach of [4], we computed the OA wave shown in Fig. 

1 (right) based on the laser pulse shown in Fig. 1 (left).  

Figure 1: A laser pulse of 6µJ and the corresponding OA wave. 
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To identify the transducer dynamics, we use system 

identification based on input-output data. Measured outputs 

of the transducer are available, but the associated inputs are 

not. Note that the input consist of the OA wave we want to 

estimate and other components due to reflections in the 

medium. To provide an input for system identification, we 

used the computed OA wave by (1); therefore, a 6th-order 

liner model for the transducer has been obtained.  

II.II Learning and inference
A GP [5] is a generalization of a normal distribution, it can 

encode a prior knowledge about a function with mean and 

covariance. Next, we show how GPs can infer OA waves. 

Let the transducer model be given in state-space form with 

an unknown input, i.e., the OA wave to be estimated. A GP 

model will describe such unknown input. We consider a 

simple covariance function for the GP prior of the OA 

wave, the exponential kernel (EK) 𝜅(𝑡, 𝑡′; 𝜎, ℓ) = 𝜎2𝑒
𝑡−𝑡′

ℓ  , 

where 𝜎, ℓ represent its hyperparameters, optimizing them 

based on measurements is referred to as GP learning. A GP 

with the EK can be represented as a state-space model 

driven by white noise [5]. This allows GP inference to be 

solved efficiently by Kalman filtering. Then, we can 

combine both sate-space models. Next, the 

hyperparameters, i.e., 𝜎, ℓ, of the augmented state-space 

model can be determined by optimizing the marginal 

likelihood based on the output measurements of the 

transducer. Once 𝜎, ℓ are calculated, the learning phase is 

terminated and they are fixed in the second phase. Then, the 

learned GP can be used like a Kalman filter for estimating 

the OA waves given the corresponding transducer signal. 

III. Results and discussion
To validate the transducer model, Fig. 2 shows its response 

to an OA signal and the corresponding measurement. The 

model captures well only the transducer dynamics of the 

first part of the signal. Note that the measurement includes 

other exciting sources, e.g. low frequency reflected waves.  

Now, we illustrate the performance of the GP. To exclude 

the effect of the transducer modelling, we have trained the 

GP on the output of the transducer model corrupted with 

white noise based on a computed OA wave at 𝑇 = 20𝑜C. 
Then, the learned GP has been utilized to estimate the wave 

at 𝑇 = 41.8𝑜C. Fig. 3, shows that the estimated wave is the 
same as that one used to excite the transducer model. 

To test the GP with real transducer signals of an irradiated 

site on the retina, the implementation was carried out 

offline. We used the data of the first phase at 𝑇 = 20𝑜C, for 
learning. Then, the learned GP was employed to estimate 

the waves of the second phase, while the tissue temperature 

is elevated, given the associated transducer measurements. 

As a representative result, Fig. 4 shows the estimation of 

the OA wave at 41.8𝑜C and the corresponding computed 
wave. For comparison, we are interested in the first part of 

the estimated signal; Fig. 4 shows that its amplitude is 

different from the computed wave. The estimated signal 

includes also other components, which might have excited 

the transducer. When we simulated the transducer model 

with such estimated wave, its response was the same as the 
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measurements used in the estimation as shown in Fig. 5. 

This demonstrates that the GP performed well based on the 

available transducer model; however, the difference in the 

amplitudes in Fig. 4 indicates an insufficiency of the model. 

Figure 2: Transducer measurement compared to its simulation. 

Figure 3: Computed OA wave compared to its estimation. 

Figure 4: Computed and estimated OA using real measurements. 

Figure 5: Measurement and simulation using estimated wave. 

IV. Conclusion and outlook
We have demonstrated that GPs can be used efficiently to 

extract OA wave data from the associated transducer 

measurements, provided good models for its dynamics. 

This data will be useful for improving related information 

of tissue in retinal laser treatment. Our next step is to 

identify transducer models based on dedicated experiments 

and to enhance the GP models with appropriate kernels.  
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