
AUTOMED - Automation in Medical Engineering 2020 

Paper ID: 011, DOI: 10.18416/AUTOMED.2020 

Spatio-temporal Gaussian processes for 
separation of ventilation and perfusion related 
signals in EIT data 
J. Graßhoff1* and P. Rostalski1

1 Institute for Electrical Engineering in Medicine, Universität zu Lübeck, Lübeck, Germany 
* Corresponding author, email: j.grasshoff@uni-luebeck.de

Abstract: Electrical impedance tomography (EIT) is used to measure regional changes in the impedance of the lung tissue 

caused by changes in either ventilation or perfusion. The separation of these two effects is a longstanding problem with 

important implications in mechanical ventilation. Unfortunately, previous approaches to perfusion/ventilation separation are 

not satisfactory. In this work, we introduce a new algorithmic approach, which models both signal components as non-

stationary spatio-temporal Gaussian processes (GPs) and we show that the corresponding inference problem can be solved 

efficiently by exploiting structure in the GP’s kernel matrix. More specifically, we enable fast matrix-vector multiplications 

with the full kernel matrix in a novel variant of a previously proposed scalable GP approach called structured kernel 

interpolation. We show preliminary results of our method on a first EIT dataset. 
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I. Introduction
Thoracic electrical impedance tomography (EIT) is a 

medical imaging modality that measures regional 

impedance changes within the lung. These impedance 

changes are mainly caused by ventilation of the lung tissue 

and to a lesser extent by its perfusion [1]. It was previously 

suggested, that a separation of these two effects would 

enable the calculation of regional ventilation-perfusion 

ratios (V/Q-ratio), which is an important clinical quantity 

in mechanically ventilated patients [2]. Still, the separation 

of ventilation and perfusion related signals is a challenging 

task due to the high difference in amplitudes between the 

two signals and significant band overlap in their spectra.  

Previous approaches have employed pixel-wise Fourier 

filtering [3], template extraction [4] and principal 

component analysis (PCA) [2]. Yet, none of the methods 

has managed to solve the problem to a satisfactory degree 

– the most promising candidate appears to be the PCA-

based approach, which however relies on an initial training

phase and a subsequent filtering phase (in which the learned

principal components are kept constant). This inherently

prevents adaptation to changes in the respiratory or cardiac

waveforms over time.

In this paper, we show that the separation of the two 

pulsatile components in EIT images can be posed as a 

spatio-temporal GP regression problem using a mixture of 

non-stationary kernels. As opposed to previous methods, 

our model does allow to explicitly account for spatial as 

well as temporal correlation using a concise Bayesian 

formulation of the source separation task. We show that the 

corresponding inference can be solved using an iterative 

structure exploiting GP regression scheme.  

II. Material and methods
A Gaussian process is used to encode our prior belief in the 

distribution of the spatio-temporal EIT data. As a model for 

the two superposed effects we use the following kernel: 

𝑘m(𝒔, 𝒔′, 𝑡, 𝑡′) = 𝑘vent(𝒔, 𝒔′, 𝜙1(𝑡), 𝜙1(𝑡′))
+ 𝑘perf(𝒔, 𝒔′, 𝜙2(𝑡), 𝜙2(𝑡′))

= 𝑘vent,SE(𝒔, 𝒔′)𝑘vent,QP(𝜙1(𝑡), 𝜙1(𝑡′))

+ 𝑘perf,SE(𝒔, 𝒔′)𝑘perf,QP(𝜙2(𝑡), 𝜙2(𝑡′)),

where 𝒔 corresponds to the spatial domain (i.e. EIT pixels) 

and 𝑡 corresponds to the temporal domain. The spatial 

correlation is described by a squared exponential kernel 

(SE) while the temporal correlation is modeled by a quasi-

periodic kernel (QP), which is warped through the non-

linear functions 𝜙1 and 𝜙2 to account for natural

fluctuations in the respiratory and heart rate. The mean of 

the GP is chosen to be zero: 𝑚(𝒔, 𝑡) = 0, and we assume 

that the measured datapoints are subject to additive 

Gaussian white noise. 

The proposed kernel depends on some free 

hyperparameters, which can be learned by optimization of 

the log marginal likelihood. The source separation problem 

can then be solved by calculating the posterior distribution 

corresponding to either of the two kernels in the sum [5]. 

Unfortunately, standard GP inference and log marginal 

likelihood evaluations are restricted to datasets with at most 

a few thousand datapoints due to the heavy computational 

requirements of 𝒪(𝑛3) involved in computing the inverse

and the log determinant of the kernel matrix. Thus, the 

standard GP solution cannot be applied to typical EIT 

datasets (with possibly hundreds of thousands of 

datapoints).  
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II.I. Warped structured kernel interpolation
Different approaches to scalable GP inference have been 

introduced in the literature – one such method is the 

structured kernel interpolation (SKI) [6], which imposes 

Toeplitz and Kronecker structure on the kernel matrix via a 

set of equispaced/grid-structured inducing points. This 

leads to an approximate form for the full kernel matrix: 

𝐾𝑋,𝑋 ≈ 𝑊𝐾𝑈,𝑈𝑊𝑇 ≔ 𝐾SKI,

here, 𝑋 denotes the set of input points (in this case, the 

spatio-temporal values of the EIT data) and 𝑈 denotes the 

set of inducing points. The matrix 𝐾𝑈,𝑈 is structured 
(Kronecker and Toeplitz structure) and the interpolation 

matrix 𝑊 can be constructed as a sparse matrix, thus 

enabling very fast matrix-vector multiplications (with 

quasi-linear 𝒪(𝑛) complexity). This allows to efficiently 

solve the inference problem and to compute the log 

marginal likelihood via iterative methods [6, 7]. SKI was 

shown to scale to possibly millions of datapoints. 

Unfortunately, in standard SKI, Toeplitz structure cannot 

be exploited in the proposed kernel due to its summation 

structure and due to the non-stationarity of the warping 

functions 𝜙1 and 𝜙2. Therefore, based on SKI, we

introduce a novel approximation to the non-stationary 

kernel used in this paper, which we call warpSKI. We 

propose to use two sets of non-equispaced inducing points 

1 = Φ1
−1(𝑈1) and 2 = Φ2

−1(𝑈2), where Φ1
−1 and Φ2

−1 

denote the application of the inverse of the two warping 
functions to all points in the equispaced/grid-structured 

inducing points sets 𝑈1 and 𝑈2. We proceed to specify the 
full approximate form of the proposed kernel: 

𝐾m 𝑋,𝑋 = 𝑊1𝐾perf 𝑈1,𝑈1
𝑊1 + 𝑊2𝐾perf 𝑈2,𝑈2

𝑊2,

here, 𝑊1 and 𝑊2 are sparse weight matrices constructed to 
interpolate between the input points 𝑋 and the warped 

inducing points �̂�1 and �̂�2, respectively. As in standard 

SKI, the two kernel matrices have Kronecker and Toeplitz 

structure, thus allowing for fast matrix-vector 

multiplications with the full kernel matrix. As in standard 

SKI, iterative methods can be applied to solve the inference 

and to evaluate the log marginal likelihood in quasi-linear 

time. 

III. Results
The considered EIT dataset of a spontaneous breathing 

neonate is from [8]. We use the first 215 frames to train our 

model and as a measure of training success we predict the 

next frame and evaluate the prediction error (using 

normalized root-mean square error). The phase warping 

functions 𝜙1 and 𝜙2 are determined directly from the data

– the respiratory phase was extracted from a pixel 
belonging to the left lung, the cardiac phase was extracted 
from a pixel between the two lungs. The total number of 
input points is 𝑛 = 699 825. The two non-equidistant

inducing point sets �̂�1 and �̂�2 are used to impose Kronecker 

and Toeplitz structure on the kernel matrix. For the 

hyperparameter optimization, it can be beneficial to use 

hyperpriors and fix some of the hyperparameters (based on 

prior knowledge about the data) to guide the optimization. 

Here we optimize for the variances 𝜎vent, 𝜎perf, the length-
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scales of the spatial kernel 𝑙vent,SE, 𝑙perf,SE and the length-

scales of the time domain 𝑙vent,SE QP, 𝑙perf,SE QP with

regularizing lognormal hyperpriors on all of the length-

scales. The remaining hyperparameters were set to fixed 

values based on prior knowledge about the data. 

All calculations were done on an INTEL Core i7-6700K 

CPU. The optimization of hyperparameters took ~9 hours 

and the subsequent perfusion-ventilation separation was 

calculated in 159.1 seconds. The nRMSE on the test frame 

was 0.176, indicating a good model fit. Fig. 1 shows the 

result of the successful source separation on the considered 

dataset. 

IV. Discussion and conclusions
We have introduced a novel solution to the EIT perfusion-
ventilation separation problem using a Gaussian process 
model. The validity of the method was demonstrated on one 
dataset. As opposed to previous methods, our model offers 
a concise Bayesian formulation for both temporal and 
spatial structure in the data. As yet, the learning of 
hyperparameters is still too expensive for practical use – this 
problem might be solved by restricting the hyperparameter 
search to a finite set of predefined hyperparameter 
configurations (corresponding to some known breathing 
types). In the future, we plan to evaluate our method on 
more datasets and compare it to the previous PCA-based 
approach. 

Figure 1: Result of EIT perfusion-ventilation separation. Time 

traces correspond to the marked pixels and include measured 

signals (black), the posterior mean of perfusion related signals 

(green) and the posterior mean of ventilation related signals 

(orange). 
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