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Abstract: The use of multimaterial 3d printers allow not to only shape the geometry but also the material properties of the part being 

designed. The difficulty for the designer is now to anticipate, what the resulting material properties of the mixture might be. Here a 

continuum mechanical approach is presented, and how this can be applied to currently used multimaterial printers using 

photopolymers and its use in a digital design process. 
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I. Introduction
Natural tissues come in great variety each with its 

individual properties. When replacing or mimicking such 

materials, e.g. for manufacturing prostheses, it is often hard 

to find a synthetic material with mechanical properties 

matching the natural surrounding tissue. Additive 

manufacturing allows one to create composite materials 

with unprecedented degree of reproducibility, therefore the 

understanding of the mechanical properties of such 

mixtures becomes very important. 

PolyJet 3d printers deposit photopolymers layer by layer 

and cure them via UV radiation. Multiple ways of material 

mixings are possible, either by depositing droplets of a 

composition of multiple different photopolymers on each 

voxel before curing, or by implementing the inclusion 

geometry in the digital design in a way that the 3d printer 

places different materials at distinct places, with the 

possibility to freely choose the geometry of the inclusions. 

Advances in the field of continuum mechanics offer various 

possibilities to predict properties of mixed solid materials, 

especially focused on elastic properties [1,2]. This 

approach requires knowledge of the properties of the pure 

materials [3,4], and allows to predict and therefore adapt 

the material mixture to the desired target properties. These 

kind of prediction can be used for mix-material inclusions 

of different shapes [5–7], various other material properties 

other than mechanical elasticity [8–11] and with different 

mixture behavior [12,13]. In this manuscript mathematical 

models from continuum mechanics are applied to materials 

printable using PolyJet technology. 

II. Methods

II.I Mixing Material Models
Several options now exist for predicting homogenized 

mixed materials, two of which are well suited of emulating 

the capabilities of common multi-material 3d printers. The 

so called Mori-Tanaka scheme assumes a matrix consisting 

of one material with various inclusions in it [13], while the 

self-consistent scheme assumes the material to be built up 

from dispersed aggregations, as it is typical for polycrystals 

[4,12] (Figure 1). Note that the investigated material has to 

be larger than the included individual phases [2]. If the 

length scales of the macroscopic and microscopic 

geometries are getting closer, the accuracy of the material 

homogenization will become poorer. In this study both 

homogenization methods were used to simulate mixed 

material properties. 

Figure 1: a) Mori-Tanaka scheme with orange inclusions 

embedded in a blue matrix. b) Self-consistent scheme with 

overlapping blue and orange phases. 

II.II Mixed material property estimation
The simulation combined Tango+ and VeroClear 

(Stratasys Ltd., Minnesota, USA). From the experimentally 

determined properties of the pure materials [14–16] the 

elastic moduli have been derived assuming transversal 

isotropy (perpendicular to the building direction of the 3d 

printer). The mix material properties have been calculated 

following the approach outlined in ref. [1] for all possible 

bi-material composites. Although these photopolymer 

mixtures are jetted as small droplets during the fabrication, 
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both for the Mori-Tanaka and self-consistent schemes the 

inclusions were assumed to be perfect spheres. The 

required Hill tensor was derived in a similar manner as 

shown in [17] and [18]. 

III. Results and Discussion
The elastic moduli and the derived Young’s Modulus of the 

mixtures could be calculated for the different mixing 

proportions using the Mori-Tanaka scheme (Figure 2). 

According to this simulation, to reproduce the mechanical 

elasticity of e.g. a tendon (Young’s modulus of E1=1.2 GPa 

[19]) would demand an inclusion volume fraction of 60% 

VeroClear within Tango+. 

Figure 2: Uniaxial Young’s modulus E1 from Tango+, 

VeroClear and the mixable bi-materials from these. A material 

mixture of about 60% VeroClear will show a Young’s modulus 

of E1=1.2 GPa, corresponding to a human tendon as reported in 

ref. [19]. The reference dashed line shows a linear interpolation 

between the pure materials Young’s moduli. 

Since no analytical solution to the self-consistent scheme 

exists, a numerical solution was computed. However, this 

computation did not lead to meaningful results, possibly 

due to numerical instability arising when the materials 

elastic properties of the two single constituents are different 

by orders of magnitude. 

IV. Conclusions
Continuum mechanics provide a framework to predict 3d 

printed multimaterials and may help selecting the optimal 

material composition. However, careful model selection 

and experimental validation of these homogenization 

concepts and their dissimilarity for different applications 

are required. 
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