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Abstract: A major challenge in attaining customized additive manufactured (AM) skull implants is segmentation of computed 
tomography (CT) scans. Therefore, this study aimed to develop a deep learning algorithm, specifically a mixed-scale convolutional 
neural network (MSDnet), to automatically segment skull defects in CT scans. The MSDnet was trained with CT scans and 
corresponding virtual 3D models of patients who had undergone cranioplasty using AM skull implants. The trained MSDnet 
segmented unseen CT scans accurately and quickly. Deep learning can thus remove the barriers of time and effort during CT image 
segmentation, thereby making customized AM skull implants more accessible to clinicians. 

I. Introduction
Additive manufacturing (AM) is causing a paradigm shift 
in medicine away from one-size-fits-all to personalised 
treatments. AM has proven to be particularly valuable in 
the field of cranio-maxillofacial surgery since it offers the 
opportunity to fabricate customized constructs such as 
skull implants [1]. The current process of creating such 
customized implants comprises three steps: 1) acquiring 
3D images of the patient using computed tomography 
(CT); 2) image processing, in which the CT images are 
converted into a virtual 3D surface model that can be used 
to design the implant; and 3) manufacturing the implant 
using a 3D printer. 

The most important step in the conversion of CT images 
into a virtual 3D model (step 2) is image segmentation: 
the partitioning of images into regions of interest that 
correspond to a specific anatomical structure (e.g., bone). 
However, common image segmentation methods used for 
medical AM cannot deal with noise, artefacts and intensity 
variations in images [2,3] hence extensive and time-
consuming manual post-processing of virtual 3D models 
is often required. Therefore, new methods to automate 
image segmentation are sought. 

Over the past few years, there have been unparalleled 
advances in using deep learning for a wide variety of 
image processing tasks. In particular, convolutional neural 
networks are becoming the standard for medical image 
segmentation [4]. Therefore, the aim of this study was to 
develop and train a neural network to segment skull 
defects in CT scans for medical AM.  

II. Material and methods
In this study, we used a mixed-scale dense convolutional 

neural network architecture (MSDnet) originally proposed 
by Pelt and Sethian [5] that combines small- and large-
scale features with far fewer trainable parameters 
compared with state-of-the-art U-Net architectures [6]. 
The MSDnet was trained using 15 CT scans (512 x 512 
and a variable number of slices) and corresponding virtual 
3D models of patients who had previously undergone 
craniotomy and cranioplasty using customized AM skull 
implants. The aforementioned virtual 3D models had been 
created by experienced medical engineers and served as 
the “gold standard” in this study. All virtual 3D models 
were first aligned with their corresponding CT scans and 
subsequently converted into gold standard labels using the 
mesh-to-label conversion module in 3D Slicer software 
(v.4.6.3) [7]. 

MSDnet training was performed on an HP Workstation 
Z840 with 64 GB RAM, an Intel Xeon E5-2687 v4 
3.0GHZ CPU, and an NVIDIA GTX 1080 Ti GPU card. 
The MSDnet implementation was performed in PyTorch 
(v.0.4.1) and is publicly available online [8]. Training 
took approximately 1 h (10 epochs) and the segmentation 
of one CT scan took approximately 20 s. The MSDnet 
performance was evaluated using five CT scans and 
corresponding gold standard virtual 3D models that were 
not used for training. The quality of the resulting MSDnet 
segmentations was assessed using the Dice similarity 
coefficient (DSC): 𝐷𝑆𝐶 ൌ ଶ்ଶ்ାிାிே , (1) 

where TP is the number of true positives, FP is the 
number of false positives, and FN is the number of false 
negatives. In addition, all five CT scans segmented by the 
MSDnet were converted into virtual 3D surface models 
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and geometrically compared to the original gold standard 
models created by the medical engineers. 

III. Results and discussion
The five CT scans segmented using the trained MSDnet 
demonstrated a high overlap with the gold standard 
segmentations (Fig. 1), with a mean DSC of 0.96 ± 0.02 
(Table 1). Note that this DSC is higher than the DSCs 
achieved by traditional segmentation methods such as 
level-set methods [9], atlas-based methods [10] and prior-
guided random forests [11]. Furthermore, the resulting 
MSDnet-based virtual 3D models were of high quality 
(Fig. 2) with an MAD of 0.33 mm ± 0.16 mm (Table 1). 
Interestingly, the virtual 3D models obtained using the 
MSDnet were more accurate in  the proximity of the skull 
defects with an MAD of 0.19 mm ± 0.14 mm (Table 1). 
This difference could have been caused by the medical 
engineer, who manually removed all noise residuals and 
smoothened the defect edges of the gold standard virtual 
3D models to ensure the best fit of the customized AM 
skull implants. Since these gold standard virtual 3D 
models were used to generate training data, the MSDnet 
learned to reproduce these smooth and accurate defect 
edges in its segmentation process. These results 
demonstrate that virtual 3D models created by medical 
engineers can thus provide new avenues to generate high-
quality training data for deep learning algorithms. 

In conclusion, deep learning offers the opportunity of 
removing the prohibitive barriers of time and effort during 
CT image segmentation in the medical AM workflow, 
thereby making customized AM constructs such as skull 
implants more affordable, and thus more accessible to 
clinicians. 

Figure 1: CT slice, gold standard segmentation, and MSDnet 
segmentation of patients 3 and 5. 

Figure 2: Virtual 3D models acquired using the MSDnet of 
patients 3 and 5.  

Table 1: Dice similarity coefficient (DSC) between the gold 
standard and the MSDnet segmentations, and the mean absolute 
deviations (MADs) between the gold standard and the MSDnet-
based virtual 3D models. MADs were calculated of the full skull, 

as well as in the area near the skull defect. 

Patient 
ID DSC MAD of full 

skull (mm) 
MAD of defect 

area (mm) 
1 0.93 0.48 0.37
2 0.98 0.30 0.08
3 0.96 0.47 0.33
4 0.99 0.09 0.09
5 0.96 0.34 0.10

Mean 0.96 ± 0.02 0.33 ± 0.16 0.19 ± 0.14 
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