3D printing of hydrogel scaffolds based on poly(ethylene glycol) diacrylate

S. F. Klimaschewski and M. Vehse*
Hochschule Stralsund - University of Applied Sciences, Stralsund, Germany
* Corresponding author, email: mark.vehse@hochschule-stralsund.de

Abstract: This is a case study for the development of a poly(ethylene glycol) diacrylate-based hydrogel for an additive manufacturing process. By introducing a photoinitiator and an UV absorber into the poly(ethylene glycol) diacrylate a spatially and temporally three-dimensional polymerization takes place. To demonstrate the possible printing resolution a scaffold is generated on a modified commercial stereolithography system.

I. Introduction

In biochemistry biocompatible materials for use in regenerative medicine are being researched with emphasis. For example, they can be used as basis for implants or scaffolds for cell colonization. The demand for these high-performance polymers is constantly growing as they have a broad property profile e.g. for tissue engineering [1-3]. Poly(ethylene glycol) diacrylate (PEGDA) is one of these polymers, which can be generated with a photoinitiator to a hydrogel [4-6]. This material is processed into a 3D structure with a specific architecture using a stereolithography (SLA) system [7,8].

The aim of this study is to demonstrate that a conventional SLA system is able to generate a useful scaffold from a hydrogel. The scaffold will serve as a scaffold with a large 3D surface. The small channels and undercuts can be used for e.g. cell colonization and nutrient delivery.

I.I. Stereolithography (SLA)

Stereolithography is an additive manufacturing technique based on photopolymerization of a resin by using UV laser radiation (e.g. 405 nm). In our case we use a commercial printer (Nobel 1.0, XYZprinting, Inc. Taiwan) with some technical modifications, shown in Figure 1 [9]. The known parameters are: a X-Y-resolution of 300 µm, a layer thickness of 25, 50 or 100 µm and a laser power range from 5 to 72 mW. All other parameters cannot be read from the system. In our experiments a few millilitres of photopolymer per formulation are required for basic investigations. Therefore, the system is modified with a smaller chamber.

The magnetic mechanism (16) between the metallic building platform and the connector we are able to dismount the platform and print specific small and filigree samples (8). Also it is possible to observe the printed objects under the microscope (VW-9000, Keyence Corp., Osaka, Japan) without removing them from the metallic platform.

II. Material and methods

In order to demonstrate the efficiency of a technical system meaningful test specimens are required. First a CAD model is created and after that the object is manufactured by the SLA system. In a first step a cube with an edge length of 15 mm is designed in a CAD program SolidWorks 2017 (Dessault Systemes SolidWorks Corp., France) and then structural modified as STL-file in the software Materialise 3-matic Version 13 (Materialise GmbH, Germany) (Figure 2). In the second step the cube is placed in a star-shaped pattern and converted into a lightweight structure. This creates a uniform framework structure (see Figure 3).
As resin, Poly(ethylene glycol) diacrylate with an average molecular weight of Mn 700 (Sigma Aldrich, Inc., U.S.A.) was intermixed for 6 h at 500 r.p.m. with the photoinitiator Omnirad 2022 (PI) (bis(2,4,6-trimethyl-benzoyl)-phenyl-phosphineoxide / 2-hydroxy-2-methyl-1-phenyl-propan-1-one) from IGM Resins B.V., Belgium. Subsequent the resin rests a period of one hour. Some further experiments showed that the best resin properties contain a PI concentration of 0.005 wt-% [9]. To reduce the curing depth on a suitable value, a UV radiation absorber (2,2’-dihydroxy-4,4’-dimethoxy-benzophenone) from TCI Deutschland GmbH was added in a value of 0.006 wt.-%. The powder was intermixed at the PEGDA+PI resin for 12 h at 40 °C and 1000 r.p.m. The laser power intensity was set to 55 mW. The sample scaffold is generated with a layer height of 0.1 mm without any supporting structures and additional edges.

Infinite Science Publishing

With regards to the literature, the results obtained show that it makes sense to carry out further investigations on PEGDA-based hydrogels with different molecular weights (Mn) such as 400 Mn, 575 Mn, 1000 Mn and 2000 Mn. It is recommended to further investigate how the generation phase behaves during the printing process and how the material properties behave for all these hydrogels. In order to make a reliable statement about the mechanical behaviour or biocompatibility of the hydrogel thermal stress tests [10] should be carried out. But also cytotoxicity, influence on tissue damage and blood compatibility (hemocompatibility tests) have to be investigated.

IV. Conclusions
The scaffold printed with the described formula shows that a commercial SLA system makes it possible to generate highly filigree thin-walled and elastic 3D objects in one production step. The designed lightweight structure (only ≈ 15 % material in vol.) corresponds in structure to the scaffold produced on the SLA system (≈ 0.26 g/cm³).

ACKNOWLEDGMENTS
The authors grateful acknowledge the Hochschule Stralsund - University of Applied Sciences for funding the study. We would also like to thank the team from the ”Laboratory for Engineering Design and Digital Product Development” at Hochschule Stralsund for their creative support during the study.

AUTHOR’S STATEMENT
Research funding: This study was funded as part of the internal research funding of Hochschule Stralsund - University of Applied Sciences (FKZ: Int-FoFö2018-12112403). Authors state no conflict of interest.

REFERENCES