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We introduce an innovative and efficient methodology for improving the longevity and performance of dental implants 

while minimizing stress-shielding. This is achieved by modifying the internal structure of the implant using two distinct 

strategies: topology optimization [1] and Triply Periodic Minimal Surface (TPMS) lattices. The density-based topology 

optimization involves a material model for hardening. TPMS Lattices are complex, repeating structures that mimic natural 

geometries found in biological systems. These lattices can be engineered to provide optimal mechanical properties, such 

as strength and flexibility, while also promoting bone-like structure due to their porous nature. Both strategies are analyzed 

using an ANSYS model with material parameters derived from mechanical tests of additively manufactured Ti-6Al-4V.  

In addition, we present a novel and efficient methodology for modeling fatigue induced by damage and plasticity, based 

on the extended Hamilton principle for dissipative processes [2,3]. This method leverages the Hamilton principle, which 

is a fundamental principle in classical mechanics. Traditional cycle-by-cycle simulations for high-cycle fatigue are 

computationally intensive and inefficient. Using this principle, we develop a simulation technique that utilizes the 

maximum amplitude of loads, rather than the exact profile of each individual load cycle. This significantly reduces 

computational time and required resources. By changing the time space within the simulations, it becomes possible to 

track force reactions over extended periods efficiently. During postprocessing, hysteresis loops (which represent energy 

dissipation in materials) and S-N curves (which relate the cyclic stress amplitude to the number of cycles to failure) can 

be derived without losing accuracy. 

This approach ensures robust and accurate simulations of high-cycle fatigue, making it possible to predict the long-term 

stability of the implants. The high-cycle fatigue material model shows that the topologically optimized structures exhibit 

no fatigue, indicating their potential for long-term use in dental implants. 
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